Reviews of avast vpn for mac. Denoted by the symbol R, the value of the gas constant is: R = 8.314472 (15) J K-1 mol-1 The two digits in parentheses indicate the uncertainty (standard deviation) in the last two digits of the value. Movement of particles (atoms, molecules, or ions) in the gas phase.
- R.D. McCarty, Thermodynamic properties of helium 4 from 2 to 1500 K at pressures to 10 Pa, J. Phys. Chem. Ref. Data 2(4): 923 (1973).CrossRefGoogle Scholar
- R.D. McCarty, The thermodynamic properties of helium II from 0 K to the lambda transitions, in: “NBS Tech. Note 1029” (1980).Google Scholar
- V.D. Arp, Properties of Super Fluid Helium, submitted to the J. Low Temp. Phys.Google Scholar
- M. Durieux and R.L. Rusby, Helium vapour pressure equations on the EPT-76, Metrologia 19: 67 (1983)Google Scholar
- Z.E.H.A. el Hadi, M. Durieux, and H. Van Dijk, Physica 41: 305 (1969).Google Scholar
- Z.E.H.A. el Hadi, M. Durieux, and H. Van Dijk, Physica 41: 289 (1969).Google Scholar
- V.V. Sychev, et al., “Thermodynamic Properties of Helium,” Hemisphere Publishing Corp., New York (1987).Google Scholar
- V. Lounasmaa, “Specific Heats at Low Temperatures,” Ph. D. Thesis, Oxford Univ. (1958).Google Scholar
- F.J. Edeskuty and R.H. Sherman, in: “Proc. 5th Intern. Conf. Low Temp. Phys. and Chem.,” Madison, WI (1958) p 102.Google Scholar
- E.R. Grilly and R.L. Mills, Ann. Phys. 8(1): 1 (1959).CrossRefGoogle Scholar
- D. White, O.D. Gonzales, and H.L. Johnston, Heat conduction of the boundary layer in liquid helium II, Phys. Rev. 89:593 (1953).CrossRefGoogle Scholar
- F.B. Canfield, T.W. Leland, and Riki Kobayashi, Compressibility factors for helium-nitrogen mixtures, J. Chem. Eng. Data 10:2 (1965).CrossRefGoogle Scholar
- D.H. Liebenberg, R.L. Mills, and J.C. Bronson, Thermodynamic properties of fluid He in the 75 to 300 K and 2 - to 20-K bar range, LA8250-MS (1980).Google Scholar
- A. Michels and H. Wouters, Physica 8: 923 (1941).CrossRefGoogle Scholar
- B.E. Gammon and D.R. Douslin, in: “Proc. 5th Symp. Thermophys. Prop.”, ed. C.F. Bonilla, New York (1970).Google Scholar
- K.R. Atkins and R.A. Stasior, Can. J. Phys. 31:1156 (1953).CrossRefGoogle Scholar
- J.A. Sullivan, “P-V-T Data for Neon and Helium at Temperatures from 70 Degrees K to 120 Degrees K and Pressure to 609 Atmospheres,” Ph.D. Thesis, Univ. of Mich., Ann Arbor, (1966).Google Scholar
- R. Weibe, V.L. Gaddy, and C. Heins, Jr., J. Am. Chem. Soc. 53:1721 (1931).CrossRefGoogle Scholar
- A.P.M. Glassford and A. J. Smith Jr., Cryogenics 6: 193 (1966).CrossRefGoogle Scholar
- T.C. Briggs, B.J. Dalton, and R.E. Barieau, “Compressibility data for helium at 0 degrees C and pressures to 800 atmospheres,” Bureau of Mines, Rep. No. RI 7287, Washington, D.C. (1969).Google Scholar
- R.D. McCarty, Interactive FORTRAN Programs for Micro Computers to Calculate the Thermophysical Properties of Twelve Fluids [MIPROPS], “NBS Tech. Note 1097” (1986).Google Scholar
- R.T. Jacobsen, “The Thermodynamic Properties of Nitrogen from 65 to 2000 K with Pressures to 10000 Atm.”, Ph. D. Thesis, Washington State University (1972).Google Scholar
- I.V. Bogoyavlenskii, L.V. Karnatsevich, and V.G. Konareva, Experimental study of the equation of state of helium isotopes (H and H) over the temperature range from 3.3 K to 14 K. Sov. J. Low Temp. Phys. 4: (1978).Google Scholar
- I.V. Bogoyavlenskii, and S.I. Yurchenko, Measurement of the molar volumes of liquid solutions of He and He under pressure of up to 100 Atm, at temperatures of 1.5–4.2 K, Sov. J. Low Temp. Phys. 2: (1976).Google Scholar
- A.I. Kamus and V.C. Rudenko, “Density of helium-4 over the temperature range 14–54 degrees kelvin and at pressures up to 110 atmospheres,” in: “Thermophys. Prop. Sub. at Low Temp.” 4: (1972).Google Scholar
R For Helium
Name: Unit 8: Gases Exam - Www.mrpalermo.com Name: Unit 8: Gases Exam A) gas to liquid B) gas to solid C changes from A)The gas particles. View an interactive map of the Helium network and all the hotspots currently active around the world. Kismac for mac. Show Offline Hotspots.